Add date features
If your dataset lacks exogenous variables, add date features to inform the model for anomaly detection. Use the date_features
argument. Set it to True
to extract all possible features, or pass a list of specific features to include.
import pandas as pd
from nixtla import NixtlaClient
nixtla_client = NixtlaClient(
# defaults to os.environ.get("NIXTLA_API_KEY")
api_key = 'my_api_key_provided_by_nixtla'
)
Use an Azure AI endpoint
To use an Azure AI endpoint, set the
base_url
argument:
nixtla_client = NixtlaClient(base_url="you azure ai endpoint", api_key="your api_key")
# Read the data
df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/peyton_manning.csv')
# Add date features for anomaly detection
# Here, we use date features at the month and year levels
anomalies_df_x = nixtla_client.detect_anomalies(
df, time_col='timestamp',
target_col='value',
freq='D',
date_features=['month', 'year'],
level=99.99,
)
# Plot weights of date features
nixtla_client.weights_x.plot.barh(x='features', y='weights')
INFO:nixtla.nixtla_client:Validating inputs...
INFO:nixtla.nixtla_client:Preprocessing dataframes...
INFO:nixtla.nixtla_client:Calling Anomaly Detector Endpoint...
INFO:nixtla.nixtla_client:Using the following exogenous variables: month_1, month_2, month_3, month_4, month_5, month_6, month_7, month_8, month_9, month_10, month_11, month_12, year_2007, year_2008, year_2009, year_2010, year_2011, year_2012, year_2013, year_2014, year_2015, year_2016
Available models in Azure AI
If you use an Azure AI endpoint, set
model="azureai"
nixtla_client.detect_anomalies(..., model="azureai")
For the public API, two models are supported:
timegpt-1
andtimegpt-1-long-horizon
.By default,
timegpt-1
is used. See this tutorial for details on usingtimegpt-1-long-horizon
.
For more details, check out our in-depth tutorial on anomaly detection.
Updated 9 days ago