Quickstart
To forecast with TimeGPT, call the forecast
method. Pass your DataFrame and specify your target and time column names. Then plot the predictions using the plot
method. You can read about data requierments here.
import pandas as pd
from nixtla import NixtlaClient
nixtla_client = NixtlaClient(
# defaults to os.environ.get("NIXTLA_API_KEY")
api_key = 'my_api_key_provided_by_nixtla'
)
Use an Azure AI endpoint
To use an Azure AI endpoint, set the
base_url
argument:
nixtla_client = NixtlaClient(base_url="you azure ai endpoint", api_key="your api_key")
# Read the data
df = pd.read_csv("https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv")
# Forecast
forecast_df = nixtla_client.forecast(
df=df,
h=12,
time_col='timestamp',
target_col="value"
)
# Plot predictions
nixtla_client.plot(
df=df,
forecasts_df=forecast_df,
time_col='timestamp',
target_col='value'
)
INFO:nixtla.nixtla_client:Validating inputs...
INFO:nixtla.nixtla_client:Preprocessing dataframes...
INFO:nixtla.nixtla_client:Inferred freq: MS
INFO:nixtla.nixtla_client:Restricting input...
INFO:nixtla.nixtla_client:Calling Forecast Endpoint...
Available models in Azure AI
If you use an Azure AI endpoint, set
model="azureai"
nixtla_client.detect_anomalies(..., model="azureai")
For the public API, two models are supported:
timegpt-1
andtimegpt-1-long-horizon
.By default,
timegpt-1
is used. See this tutorial for details on usingtimegpt-1-long-horizon
.
Updated 8 days ago